надлишкової дискретизації в приймачі

B

BLWFSOJ

Guest
Привіт там, я зіткнувся деякі труднощі в розумінні цього поняття. Я читав в якісь папери, що-семплірування на стороні одержувача збільшення зразки кореляції сигналу. Як це сталося я не знаю. наскільки я знаю, збільшуючи число проб не впливає на кореляції. ласка, допоможіть. З повагою,
 
Дискретизація означає, що ви зразка при високій ставці, ніж ставка сигналу. Так як сигнал змінюється повільно відносно. частота дискретизації, сусідніх зразків корелюють. Але якщо ви нормалізують співвідношення затримки частота дискретизації, то передискретизации просто надає вищий дозвіл і тієї ж функції автокореляції. Так що в цьому сенсі нічого не змінює.
 
Спасибі, мета мого питання, щоб переконатися в наступному: у дуже низьких SNR коливання від шуму не дозволяє некогерентного виявлення (детектора енергії), щоб дати хороші результати. Тому ми намагаємося визначити сигнал від шуму деяка кореляція схем (бо шум є випадковою величиною гаусові незалежні однаково). У цьому сенсі ми можемо сказати, що за відбір проб збільшується співвідношення між вибіркою. особливо, якщо ми використовуємо власні кореляційної матриці, щоб зловити цей збільшилася кореляції. З повагою,
 
Я не розумію вашої лінії міркувань. Те, що я думаю, що ви можете робити це. Потрібний сигнал з обмеженою смугою і детермінованим. Ви шумового сигналу з більшою пропускною здатністю, ніж корисний сигнал. Якщо у вас зразок у розмірі, що відповідає корисний сигнал, то буде згладжування для шумового сигналу. Це зменшує ваші в смузі SNR. Якщо ви збільшуєте свої частоти дискретизації там менше накладення. Після цього, кореляційні функції, як низькочастотний фільтр, який знижує через смугу шуму. Ви можете досягти того ж ефекту, низькочастотної фільтрації до взяття проби. Таким чином, ви можете уникнути передискретизации.
 
за відбір проб може збільшити correlation.for більш детально перевірити наступний документ,, Спектр-Sensing алгоритмів когнітивного радіо на основі статистичних коваріації Yonghong Цзен, Senior Member, IEEE, і Ін-Чанг Лян, Senior Member, IEEE ", то буде ур відповідь
 
Привіт, дякую за відповідь. Насправді ж автора в різних публікації (максимальне власне визначення) змусило мене поставити це питання. Незрозуміло, чому вузькосмугових сигналів мають високу кореляцію між його зразки (дані зразки повинні бути незалежними). Якщо, якщо канал розглядається як частота селективними завмираннями. (Будь ласка, скажіть мені, якщо я пропускаю тип каналу) З іншого боку, я перевірив іншої літератури з (Бездротові технології мікросхем, системи та пристрої, для Кшиштофа Iniewski ), який говорить: Сторінка 148 "Зверніть увагу, що-семплірування буде корелювати шуму зразків, таким чином, виявлення може бути завжди зводиться до дискретизації Найквіста". Я знаю, що якщо ми збільшенню числа відчув зразки виявлення продуктивність збільшиться, але це вже інша історія, чи не так? насправді, я навіть зробив моделювання роботи автора: "максимальне власне виявлення: теорія і застосування", але MED (який заснований на теорії кореляції збільшиться на передискретизации) виявлення дає мені такі ж результати, як енергетика виявлення. З повагою,
 
[Цитата = Eng.Abbasi] Неясно, чому вузькосмугових сигналів мають високу кореляцію [/ цитата] Ви повинні прочитати про зв'язок між спектром і автокорреляционной функції. Спектральна щільність потужності (PSD) просто перетворення Фур'є автокореляційної функції. Вузькою смугою пропускання тому увазі "широке" автокорреляционной функції. [Цитата] "Зверніть увагу, що-семплірування буде корелювати шуму зразків, таким чином, виявлення може бути завжди зводиться до дискретизації Найквіста." [/ Цитата] висновок вірний, але кажучи, що це так дивно і вводить в оману. За вибірки нічого не міняє про сигнал властивостями. Це _тільки_ зміни вашого дозволу. Дискретизація Тому безглуздо - немає ніякої нової інформації. (Хоча це може бути вигідно для деяких низькою складністю реалізації.) Він навіть може бути контрпродуктивним, оскільки він може призвести до поганої обумовленості. [Цитата] Я знаю, що якщо ми збільшенню числа відчув зразки виявлення продуктивність збільшиться, але це вже інша історія, чи не так? [/QUOTE] Абсолютно вірно.
 

Welcome to EDABoard.com

Sponsor

Back
Top